Group I catalytic intron — Group I catalytic introns are large self splicing ribozymes. They catalyze their own excision from mRNA, tRNA and rRNA precursors in a wide range of organisms. The core secondary structure consists of nine paired regions (P1 P9). These fold to… … Wikipedia
Group code recording — In computer science, group code recording (GCR) refers to several distinct but related encoding methods for magnetic media. The first, used in 6250 cpi magnetic tape, is an error correcting code combined with a run length limited encoding scheme … Wikipedia
neighboring group — gretimoji grupė statusas T sritis chemija apibrėžtis Šalia esanti grupė. atitikmenys: angl. adjacent group; neighboring group; neighbouring group rus. смежная группа; соседняя группа … Chemijos terminų aiškinamasis žodynas
neighbouring group — gretimoji grupė statusas T sritis chemija apibrėžtis Šalia esanti grupė. atitikmenys: angl. adjacent group; neighboring group; neighbouring group rus. смежная группа; соседняя группа … Chemijos terminų aiškinamasis žodynas
Symmetric group — Not to be confused with Symmetry group. A Cayley graph of the symmetric group S4 … Wikipedia
Wallpaper group — A wallpaper group (or plane symmetry group or plane crystallographic group) is a mathematical classification of a two dimensional repetitive pattern, based on the symmetries in the pattern. Such patterns occur frequently in architecture and… … Wikipedia
carbon group element — ▪ chemical elements Introduction any of the five chemical elements that make up Group 14 (IVa) of the periodic table namely, carbon (C), silicon (Si), germanium (Ge), tin (Sn), and lead ( … Universalium
Swedish ethnic group — Infobox Ethnic group group=Swedes (Svenskar) caption= Gustav Vasa • Carl Linnaeus • J. J. Berzelius • Alfred Nobel Selma Lagerlöf • Ann Margret • Björn Ulvaeus • Markus Näslund poptime= 16 million (est.) regions=flagcountry|Sweden:nbsp|67,850,000 … Wikipedia
Mandarin Oriental Hotel Group — Type Public (SGX: M04 LSE: MDO) … Wikipedia
n-ary group — In mathematics, an n ary group (also n group, polyadic group or multiary group) is a generalization of a group to a set G with a n ary operation instead of a binary operation.[1] The axioms for an n ary group are defined in such a way as to… … Wikipedia